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ABSTRACT

We investigate spatial-dispersion properties of hybrid surface waves propagating in the boundary of a semi-infinite
layered metal-dielectric nanostructure. Electromagnetic fields can be dramatically affected by a nonlocal optical
response of the plasmonic lattice. We demonstrate that the use of the so called effective medium approximation
(EMA) is not justified if the thickness of a metallic layer becomes of the order of the metal skin depth. We
compare the results obtained by means of EMA with computer solutions of Maxwell’s equation, including losses
in the metal.
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1. INTRODUCTION

Recently, metallodielectric superlattices are receiving more and more attention because of their extraordinary
optical properties such as near-field focusing, subwavelength imaging, and negative refraction.1–3 The inclusion
of metallic elements is responsible for the excitation of plasmonic resonances on the surfaces of such an anisotropic
metamaterial. Other kind of polariton surface waves may exists, for instance, fields propagating along the optical
axis when the plasmonic crystal is cut normally to the orientation of the layers.4 Interestingly, fundamental
properties of these surface waves may be considered by using the effective-medium model.5

Here we demonstrate the existence of surface waves in the layered metamaterial with oblique propagation.
These surface waves are not TM polarized but they have hybrid polarization. We investigate the spatial dispersion
of these hybrid surface waves. We put emphasis in the case that the thickness of a metallic layer becomes
comparable with the metal skin depth. Then, electromagnetic field properties in such a nanostructure can be
dramatically affected by a nonlocal optical response and coupling of surface plasmon polaritons at different
metal-dielectric interfaces.6, 7 We demonstrate that the use of the so called EMA, as a conventional approach for
describing optical properties of the layered structures, and their description as uniaxial metamaterials (plasmonic
crystals) is not justified, in general.

For simplicity, we first confine ourselves to the case that EMA is valid and, therefore, the superlattice behaves
essentially like a uniaxial plasmonic crystal with the main optical axis perpendicular to the metal-dielectric
interfaces. Then we may follow Dyakonov studies8 in order to obtain an analytical expression for the spatial
dispersion of these surface waves. Later we present numerical simulations that confirms the invalidity of EMA-
Dyakonov approach for most practical cases. The propagation of surface modes obliquely to the optical axes
occurs under favorable conditions regarding the thickness of the layered elements and the dielectric permittivity of
the constituent materials. In opposition with pure Dyakonov waves, here we find solutions within a wide angular
spectrum. Finally, losses in the metallic layers have great influence on the solutions of Maxwell’s equations.
However, we will demonstrate that dissipative effects are minimized when the center of mass of the surface wave
shifts in direction to the isotropic transparent medium.
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Figure 1. (a) Schematic setup under study consisting of a semi-infinite Ag-GaAs superlattice and a cover dielectric, either
N-BAK1 or P-SF68 [SCHOTT]. (b) Graphical representation by using the effective-medium approach.

2. DYAKONOV-LIKE SURFACE WAVES

Let us first consider a bilayered superlattice made of two different materials that are alternatively stacked along
the z-direction. The unit cell of the 1D photonic lattice consists of a transparent material of dielectric constant
εd and slab width wd followed by a metal of parameters εm and wm, respectively. In our numerical simulations we
set εd = 12.5 and εm = −103.3+ i8.1 at a wavelength λ0 = 1.55 μm corresponding to GaAs and Ag, respectively.
This metamaterial is located in the semi-space x > 0. Beside the periodic medium we place an isotropic material
of dielectric constant ε, as shown in Fig. 1(a). On its boundary at the plane x = 0 we expect to find bound
waves, and therefore the electromagnetic fields fall off exponentially when |x| → ∞.

In order to obtain analytical solutions of Maxwell’s equations corresponding to surface waves on the super-
lattice boundary, we configured the optical anisotropy of our periodic structure by employing average estimates.
In particular, the form birefringence was modeled by the effective-medium theory.9 The validity of this approx-
imation is limited to periods Λ = wd + wm that are much shorter than the wavelength, Λ � λ0. In this case,
the superlattice behaves like a uniaxial crystal whose optical axis is perpendicular to the interfaces, that is the
z-axis. The EMA estimates the relative permittivity along the optical axis by

1

ε||
=

1− f

εd
+

f

εm
, (1)

and
ε⊥ = (1− f) εd + fεm, (2)

transversally, considering that the filling factor of the metal is f = wm/ (wd + wm). In Fig. 1(b) we plot the
complete picture as a result of being under the effective-medium model.

In Fig. 2 we represent the effective birefringence Δn =
√
ε||−√

ε⊥ corresponding to the Ag-GaAs superlattice.
For simplicity we have neglected material losses, thus setting Im(εm) = 0. In our case, even a small filling factor
of the metallic composite leads to an enormous birefringence. The term Δε = ε||− ε⊥ has approximately a linear
variation upon f , unlike Δn, up to fmax = 0.108 where ε⊥ = 0, as shown in the inset of Fig. 2. A filling factor
higher than fmax provides negative values of ε⊥, associated with hyperbolic dispersion.10 If f � 1 we observe
that

Δε =
(εd + εm)

2

−εm
f. (3)

Since εm < 0 therefore Δε > 0 (and Δn > 0), that is, birefringence is positive. Despite fmax � 1, the maximum
birefringence achievable reaches [Δn]max = 3.77. Note that Δn = 0.0084 for crystalline quartz, and Δn = 0.22
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Figure 2. Form birefringence Δn of the 1D multilayered Ag-GaAs structure in terms of the metallic filling factor, f . The
inset shows changes of Δε = ε|| − ε⊥ for the same range of filling factors.

for liquid crystal BDH-E7,11 implying that birefringence in our artificial uniaxial crystal is greater by more than
one order of magnitude.

Once the superlattice may be treated like an anisotropic media, we may determine the analytical diffraction
equation giving the 2D wave vector of hybrid surface waves propagating at x = 0. In the isotropic media we
consider homogeneous TE and TM waves with real components ky and kz of the wave vector. Note that these
wave fields are inhomogeneous along the x-axis in a direct proportion to exp (−κ|x|), where

κ =
√
k2y + k2z − k20ε. (4)

and k0 = 2π/λ0. On the other side of the boundary, the ordinary and extraordinary waves in the effective
uniaxial medium follow also exponential decays with rates given by

κo =
√
k2y + k2z − k20ε⊥, and (5)

κe =
√
k2y + k2zε||/ε⊥ − k20ε||, (6)

respectively. To derive the Dyakonov equation providing a map of allowed (ky , kz) we finally consider that
the transverse components of the electric field and the magnetic field are continuous at x = 0. The resulting
diffraction equation is8

(κ+ κe) (κ+ κo) (εκo + ε⊥κe) =
(
ε|| − ε

)
(ε − ε⊥) k20κo. (7)

By meticulous inspection of Eq. (7), and assuming that all dielectric constants and decay rates involved are
positive, we find that

ε⊥ < ε < ε||, (8)

which is necessary for the surface waves to exist. As a consequence, we require that the anisotropic medium
exhibits a positive birefringence.

Figures 3(a)-(b) depict the solutions of Eq. (7) for two different anisotropic media. In all cases, the wavelength
is set λ0 = 1.55 μm, and the isotropic cover is N-BAK1 with dielectric constant ε = 2.42. In (a) we evaluate
Eq. (7) for a liquid crystal E7 using ε|| = 2.98 and ε⊥ = 2.31. In this case Dyakonov waves propagate in a
narrow angular domain Δθ = θmax − θmin, where θ stands for the angle of the 2D vector (ky, kz) with respect
to the optical axis, that is, tan θ = ky/kz. For the liquid crystal E7 we estimate Δθ = 0.92◦ around a mean
angle θ̄ = 26.6◦. Note that Δθ is extremely high if it is compared with the angular range obtained for optical
crystals like quartz exhibiting a standard birefringence. In order to increase even more the angular range Δθ we
consider in (b) a plasmonic crystal made of Ag-GaAs. For a filling factor f = 0.10, the silver composite provides
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Figure 3. Solutions of the Dyakonov equation (7) for (a) an anisotropic E7 liquid crystal, and (b) the Ag-GaAs superlattice
of f = 0.10 depicted in Fig. 1. The cover is N-BAK1, a solid transparent material of refractive index n = 1.56.

ε|| = 14.08 and ε⊥ = 0.92, thus birefringence gives Δn = 2.79. Eq. (7) provides solutions for angles ranging from
θmin = 39.0◦ up to θmax = 71.3◦. As a consequence the angular range Δθ = 32.3◦ has increased by more than
one order of magnitude.

3. EXACT SOLUTIONS OF MAXWELL’S EQUATIONS

The EMA is limited to a width of the metallic slabs that is much lower than the wavelength, wm � λ0. However,
this condition must be taken into account with care since the skin depth of noble metals is extremely small,
λs ≈ c/ωp, where ωp is the plasma frequency of the metal. In the case of silver we estimate that λs = 24 nm. If
the width of the metallic layers comes close to the skin depth, nonlocal effects cause that the EMA considerably
deviates from exact calculations.12 Moreover, in practical terms, experimental realizations of multilayered devices
rarely go to widths below 10 nm. As a consequence, it is highly appropriate to estimate discrepancies derived
by these nonlocal effects.

Next we evaluate the full-wave solutions of Maxwell’s equations leading to the spatial spectrum of Bloch
waves that propagate in the metal-dielectric lattice. In this case kz represents the pseudo-moment of Bloch
waves. In Fig. 4 we show the spatial dispersion equation9

cos(kzΛ) = cos (kmzwm) cos (kdzwd)− ηo,e sin (kmzwm) sin (kdzwd) , (9)

corresponding to S-polarized (ordinary) and P-polarized (extraordinary) waves propagating within the periodic
Ag-GaAs structure with f = 0.10. Note that

ηo =
1

2

(
kdz
kmz

+
kmz

kdz

)
, and (10)

ηe =
1

2

(
εmkdz
εdkmz

+
εdkmz

εmkdz

)
, (11)

are coefficients applied in Eq. (9) for ordinary and extraordinary waves, respectively. Finally

k2t + k2qz = εqk
2
0 , (12)
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Figure 4. Isofrequency curves evaluated from Eq. (9) for a Ag-GaAs superlattice with filling factor f = 0.10. Results
for TM (solid lines) and TE waves (dashed lines) for different values of wm. The dotted-dashed line corresponds to the
isofrequency curve for the isotropic N-BAK1 cover. Note that losses in silver are not considered here.

being k2t = k2x + k2y, which represents the dispersion equation for bulk waves within GaAs (q = d) and silver
(q = m).

For clarity, the numerical simulations ignore absorption in silver. In Fig. 4 we observe that the EMA is
accurate for wm = 3 nm. However, deviations of the dispersion contour are evident for higher widths. Apparently
Eq. (9) provides appropriate solutions in the vicinity of kz = 0 for TM waves. On the opposite side, propagation
along the z-axis, where kx = ky = 0, presents the highest discrepancies. This is caused by the most significant
contribution of the skin depth in diffraction. As a result, the pseudo-moment kz increases for higher wm, an effect
that is observed simultaneously for TM and TE waves. For TE polarization, isotropy of the isofrequency curve
is practically conserved, but effective ε⊥ increases for higher wm, e.g., n⊥ = 1.70 and n|| = 1.67 for wm = 12 nm.
Thus form birefringence is reduced in the plasmonic crystal.

Anisotropy drop caused by the small skin depth has a great impact on the excitation of Dyakonov-like surface
waves. Increasing ε⊥ and simultaneously keeping ε|| leads to a significant modification of the isofrequency curve
derived from Eq. (7). Moreover, we may get to the point that the photonic device cannot sustain surface waves
if the value of ε⊥ exceeds that of ε. To avoid this drawback, we may use a cover of higher refractive index.

Heretofore we have eluded another important matter in plasmonic devices in relation with dissipative effects in
metallic elements. In order to tackle this problem, we numerically evaluate the pseudo-moment kz for given real
values of ky. Since Im (εm) �= 0 then kz becomes complex. This means that the surface wave cannot propagate
indefinitely and there exists an energy attenuation length given by l = (2Im[kz ])

−1. On the other hand, it is
necessary to impose that the real part of the parameters κ, κo and κe given in Eqs. (4)-(6) are all positive. Note
that ε⊥ and ε|| are also complex. This fact leads to effective field decays for |x| → ∞ and, therefore, confinement
near the plane surface x = 0.

Fig. 5(a) represents the spatial dispersion of Dyakonov-like solutions in the plane kyRe(kz). We also plot the
isofrequency curves for Bloch modes shown in Fig. 4, provided kx = 0, corresponding to a metallic composite of
f = 0.10 and wm = 12 nm. The numerical simulations are performed using a commercial software (COMSOL
Multiphysics) based on the finite-element method (FEM). From our computer simulations we have not observed
surface waves for a cover of N-BAK1, where n = 1.56. This case is not consistent with Eq. (8) since n⊥ = 1.70
and n|| = 3.75. Fig. 5(a) depicts the spatial dispersion when n = 1.95 corresponding to P-SF68 [SCHOTT].
The boundaries of such curve are established according to the ability of the electromagnetic field to be confined
in the neighborhood of x = 0, which leads to a certain degree of inaccuracy from computational grounds. In
Fig. 5(b) we plot Im(kz)/Re(kz) in the range of existence of the surface waves. For paraxial surface waves with
low ky, we observe that Im(kz) � Re(kz). This is caused by a large shift of the intensity maximum toward the
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Figure 5. (a) Isofrequency curve corresponding to hybrid surface waves existing at the boundary between a semi-infinite
P-SF68 cover and a plasmonic Ag-GaAs superlattice of f = 0.10 and wm = 12 nm. In (b) we represent the imaginary
part of kz obtained from our FEM simulations.

transparent isotropic medium. In this case Re(κ) � Im(κ). On the other hand, nonparaxial waves with high ky
are characterized by deep energy penetration inside the plasmonic superlattice. As a consequence, losses in the
metal are manifested by rising significantly the values of Im(kz).

4. CONCLUSIONS

We conclude that oblique surface waves may propagate at the boundary between a plasmonic bilayer superlattice
and an isotropic transparent material. These modes are not TM-polarized, since all three spatial components
of the electric, as well as of the magnetic field are involved. That is, these modes are hybrid. Realistic slab
widths lead to solutions that deviate significantly from the results of EMA and Dyakonov analysis. Our FEM
simulations prescribe the use of cover materials of a higher refractive index for the existence of surfaces waves. A
wide angular range of surface waves is reachable with large to moderate energy attenuation lengths. We remark
that the properties of the resulting bound states change rapidly with the refractive index of the surrounding
medium (cover), which suggests potential applications for chemical and biological sensors.
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